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CONTINUOUS EXPLICIT RUNGE-KUTTA METHODS OF ORDER 5 

J. H. VERNER AND M. ZENNARO 

ABSTRACT. A continuous explicit Runge-Kutta (CERK) method provides a con- 
tinuous approximation to an initial value problem. Such a method may be 
obtained by appending additional stages to a discrete method, or alternatively 
by solving the appropriate order conditions directly. Owren and Zennaro have 
shown for order 5 that the latter approach yields some CERK methods that re- 
quire fewer derivative evaluations than methods obtained by appending stages. 
In contrast, continuous methods of order 6 that require the minimum num- 
ber of stages can be obtained by appending additional stages to certain discrete 
methods. This article begins a study to understand why this occurs. By making 
no assumptions to simplify solution of the order conditions, the existence of 
other types of CERK methods of order 5 is established. While methods of the 
new families may not be as good for implementation as the Owren-Zennaro 
methods, the structure is expected to lead to a better understanding of how to 
construct families of methods of higher order. 

1. INTRODUCTION 

Matched pairs of discrete explicit Runge-Kutta methods such as those de- 
rived by Fehlberg [4], Verner [9], and Prince and Dormand [7] are efficient 
algorithms for treating initial value problems of ordinary differential equations. 
Recently, it has been shown how the approximate solution provided by an ex- 
plicit Runge-Kutta method at a set of discrete points can be extended to yield 
a continuous, or even differentiable, approximation. A bootstrapping technique 
developed by Enright et al. [3] appends extra stages to some well-known pairs to 
yield formulas that provide interpolated values of the solution over the complete 
interval of integration. In an alternative general-purpose strategy for append- 
ing stages, Verner [9] solved the order conditions sequentially to obtain such 
efficient interpolants of higher orders. 

In a different approach for deriving continuous Runge-Kutta methods, Owren 
and Zennaro [5] establish the minimum numbers of stages required for contin- 
uous methods of orders p < 5. Furthermore, in [6] these authors exploit the 
strategy of stage-reuse to obtain eight-stage continuous methods of order 5 in 
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which the First Stage of a new step is the same As the Last stage (FSAL) of 
the immediately preceding step of computation. Thus, after each successful 
step only seven new derivative evaluations would be required for the next step. 
Such a method requires one more stage than the seven-stage discrete FSAL pair 
of orders 4 and 5 constructed by Dormand and Prince [2], and simultaneously 
provides a continuous approximation. Since each continuous fifth-order FSAL 
method properly imbeds a fourth-order method, such a method may be imple- 
mented with a variable stepsize for effective error control. 

For pairs of methods of orders 4 and 5 with appended interpolants con- 
structed by Enright et al. [3], nine stages were required, and for other pairs of 
these orders, at least nine stages are required for such interpolants. In recent 
work, Santo [8] established that at least eleven stages are required for CERK 
methods of order 6, and Verner [10] has shown that eleven-stage continuously 
differentiable methods of order 6 could be obtained by appending interpolants 
to eight-stage pairs of orders 5 and 6. That is, although minimal-stage CERK 
methods of order 5 cannot be obtained by appending interpolants to minimal- 
stage pairs of orders 4 and 5, appending suitable stages to a minimal-stage pair 
of orders 5 and 6 can yield a minimal-stage CERK method of order 6. 

To gain a better understanding of minimal-stage continuous methods, we 
modify the approach in [5] to characterize the order conditions in a form anal- 
ogous to that in [10]. Thus, we begin with a discrete method of order p whose 
coefficients satisfy the set of (primary) quadrature conditions on the weights 
{bi} and nodes {ci}, 

s 

(1) ZbicT =-, T= 1,... ,p, 
i=l 

and the set of (secondary) subquadrature conditions which require that certain 
weighted sums of the subquadrature expressions using coefficients {a1j}, 

i-i cT 
(2) q[= aijc-IL i, T=l,... ,p, i=l,... ,s, 

j=1 

be identically zero. Although they differ from the standard form, these order 
conditions retain the one-to-one correspondence with rooted trees identified 
by Butcher [1]. Furthermore, the two different sets of order conditions are 
equivalent in the sense that coefficients for a method of order p will satisfy 
both sets. 

Familiarity with the use of rooted trees in tabulating the standard order con- 
ditions is assumed. In particular, each quadrature condition (1) is identified by 
a rooted tree of height H(t) = 1 or 2. The other subquadrature conditions 
differ from those in [1], and each of these corresponds to a tree t = [t'] 
[t, t^2, ... tk] of height H(t) > 3 with r(t) = 1 + r(t11) + r(12) + + r(4^) 
nodes, where t' is the set of trees {i^, j = 1, ... , k} obtained by deleting the 
root of t. This order condition may be represented formally as 

s k 

(3) V1(t)=_ Ebj rIV/i(t^) = 0, H(t) >3, 3 <r(t) <p. 

For each tree t, the product Hk= yi,tQ) of compound weights for stage i is 
characterized by subquadratures and coefficients of a method uniquely identified 
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by the set of trees t'. Later, these are tabulated explicitly for p < 5, and 
otherwise defined recursively for all p. To construct a continuous method, we 
need to choose coefficients of a Butcher tableau 

TABLE 1. Coefficients of a method 
Cl 

C2 a21 
C3 a3l a32 

Cs as as2 as,s-I 

b, (u) b2(u) . . . b5(u) 

with polynomial weight functions {bi(u), i = 1, ..., s} to satisfy the more 
general conditions 

s 

( 1') Z bi(u)c`1=!- u T =1,...,p, 
i=l 

and 
s /k 

(3') y,(t)(u)=Zbi(u) |lVi(tj) =0, H(t) > 3, 3 < r(t) < p. 

More detail on these order conditions is to be found in Verner [10]. 
By representing the tableau using an s x s matrix A, and s-vectors b(u) and 

c as 

c A 

bt(u) 

the order conditions may be written more concisely. Let e define the s-vector 
of units, qT the s-vector of subquadratures of order T whose elements are 
defined by (2), and C a diagonal matrix with diagonal c. Then the quadrature 
conditions may be written as 

(1") bt(u)CT-e= = - j cT-1 dc, T= 1,...,p. 

Observe that there exists a vector b(u) of weight functions satisfying these 
equations if and only if there are at least p distinct nodes. 

The subquadrature conditions may be written for order 3: bt(u)q2 = 0, for 
order 4: bt(u)q3 = bt(u)Cq2 = bt(u)Aq2 = 0 , and for order 5: bt(u)q = 

bt(u)Cq3 - bt(u)C2q2 = bt(u)CAq2 = bt(u)Aq3 = bt(u)ACq2 = bt(u)A 2q2 = 

bt(u) (q2)2 - 0, where the square (q2)2 of the vector q2 denotes a compo- 
nentwise product. Thus, a continuous method of order 5 is obtained if the 
coefficients of A and the vectors c and b(u) satisfy (1"), and bt(u) is orthog- 
onal to twelve s-vectors. It is convenient to denote the matrix of these twelve 
column vectors as '5 with each column identified by the common degree of 
the homogeneous polynomials it contains. Hence, this matrix has one column 
of degree 2, three columns of degree 3, and eight columns of degree 4. 
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For each order p > 5, the subquadrature order conditions may be generated 
by constructing 'P, r = 6, ..., p, recursively. Then, the vector function 
bt(u) must be orthogonal to the columns of 'p,. To obtain 'P, columns of 
degree r - 1 are appended to T'_, possibly in the sequence correspornding 
to that suggested by Owren and Zennaro [5] for (r. However, unlike (r, 
T' does not include the quadrature conditions and so the algorithm must be 
slightly modified. The first column of degree r - 1 in ' is qrl1 Next, C- 
transformations are obtained by premultiplying each column of degree r - 2 
of T'- by the diagonal matrix C. Then A-transformations are obtained by 
premultiplying each column of degree r - 2 of T'- by A. Finally, each 
remaining column is the componentwise product of two columns of P_3s, the 
sum of whose degrees is exactly r - 1 > 4. 

For a continuous method of order p characterized by a matrix A, Owren 
and Zennaro [5] define the matrix A to be p-minimal if dim(A) = rank(%Dp). 
Furthermore, they consider CEN( p), the minimum number of stages required 
for a CERK method of order p, and determine CEN(p) for p < 5. Here, 
it is convenient to define a CERK method of order p to be p-minimal if its 
matrix A is p-minimal, and p-optimal if it uses only CEN( p) stages. Results 
in [5] establish that some methods are not p-minimal, but that every p-optimal 
method is p-minimal. If Tp is obtained by appending 'p to the column 
matrix of {CT-le, T = 1, ... , p}, then it may be shown [10] that there is a 
nonsingular matrix L for which Tp = LDp, so that a method is p-minimal if 
dim(A) = rank(Tp) . For example, this implies that the rows of Tp are linearly 
independent. Here, this representation of p-minimality is used to derive new 
p-optimal methods for p = 5. To prove the results below and derive the new 
methods, a number of tedious algebraic computations are required, and these 
have all been executed using the MAPLE programming language. While the 
detailed computations are omitted, results of the computations are inserted as 
appropriate. 

2. CONSTRUCTION OF METHODS 

We call the stage-order of stage i the largest integer pi for which the sub- 
quadrature expressions (2) are equal to zero. That is, we shall assume for 
SOV =(pl, , ps), that 

(4) qik=O0, I < k < pi, i =l,5...,5s,5 

hold. This defines a stage-order vector (SOV) for each method, and we desig- 
nate the dominant stage-order (DSO) as the least value of Pi E SOV such that 

=c bj(u)qJ q'i 0 [10]. 
The 5-optimal CERK methods of the FSAL type constructed by Owren and 

Zennaro [6] have DSO = 2. An alternative derivation of those methods moti- 
vates the construction of other 5-optimal methods. 

First, constrain the nodes to consist of subsets of distinct nodes so that the 
stage-order vector (5,1,2,2,2,2,2,5) specifies the stage-orders of eight stages. The 
final stage has order 5 to allow for stage-reuse in the subsequent step. 

Second, choose constants K1, K2, and Mr, Nr, r = 1, 2, 3, to minimize 
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the rank of 'P . That is, for each i = 3,... , 8 impose the conditions 

(5) 1i- C 8 
C2 I~ 2 2 -2 

(S) qi =_ Eaijc- = Klqj +EIK{f2aik Iqk 
2 

j=1 k=2 

8 i-l 8 

(6) (A2q2)= E aija = 
2 

Mjq7+ {M2aik + (ci- C3)M3aikl qk2, 
k=2 j=k+ I k=2 

and 

i-i 4 8 

(7) q Z a 3c- - = Nqi +E{ff2aik + (Ci -C3)N3aik}qk2 
j=1 k=2 

Since qk= 0 if k > 2, values of K1, M1, N1 are of no consequence, and 
further, each summation over k reduces to a mere substitution of k = 2. 

Third, for stage-reuse, stage s = 8 must have stage-order 5, so that ql = 0, 
= 1,...,5. Also, as qk$ 540 only for k = 2, stage 2 also requires that 

7 7 i-i 

(8) a82 =E a8iai2 = E E a8iaijaj2 = 0. 
i=3 i=4 j=3 

When coefficients of a method are chosen to satisfy these constraints, the 
weight functions {bi(u), i = 1, ... , 8} may be chosen to obtain a continuous 
method of order 5. This follows because the set SC = {q2 Aq2, CAq2} is a 
basis for the column space of 'Ps: since qk2 : 0 only if k = 2, each of Cq2, 
C2q2, and (q2)2 are multiples of q2, and also ACq2 = c2Aq2 is a multiple of 
Aq2. Next, (5) implies that q3 E span {q2, Aq2}, and (6) and (7) imply that 
A2q2 and q4 E span (SC), respectively. Then, as Cq2, CAq2, Aq2, A2q2 e 
span (Sc), (5) with premultiplication by each of C and A respectively implies 
that Cq3 and Aq3 E span (Sc) . Hence, the twelve columns of P5 are spanned 
by Sc. 

Thus, to obtain a continuous method of order 5, it is sufficient that the eight 
weight functions are chosen to satisfy (1") and are orthogonal to the set Sc. 
Such a choice is possible provided that the matrix of this system is nonsingular. 
Nonsingularity can be ensured by choosing certain nodes to be distinct and by 
imposing minor constraints on the coefficients. 

It remains to show that the s nodes and the i - 1 coefficients of stage i 
for each i < 8 can be selected to satisfy (4)-(8). To establish this, we observe 
first that the SOV imposes one condition on stage 2, two each on stages 3 to 7, 
and five on stage 8. Parameter K2 is determined by stage 3, and imposes one 
more condition on stage 4. If the first four nodes are distinct, these uniquely 
determine coefficients of the first four stages. Parameters {Mr, Nr, r = 2, 3} 
are then determined from stages 3 and 4. The parameters are 

(5') K2 4C3 6c2 

(6') M2 = ? M = 
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and 

(7) N2=C3C2, N3-c(4-) 
C2 C2(3C3- 2C4) 

For stage 5, the necessity for {a5i, i = 1, ..., 4} to satisfy (4) with p5 = 2 
and (5)-(7) requires that the matrix 

1 1 1 1 C5 1' ~~~~~~~~~~~~~~~~~21 
0 C2 C3 C4 21 

(9) F = c2-K2q2 c2 2 a 
0 -M3(c5 - C3)q2 a32q2 a42q2 0 

0 c 3-(N2+N3(c5-c3))q2 c33 c43 C4 

be singular. Since 

C2CC4C2 
( 9 ) det(F) = 28(3c3- 24) (C3 - C4)(C3 - C5)(C4 - C5)2 

either one of C2, C3, C4, C5 is zero, or else two of the last three nodes are 
equal. If C3 = C4, then q42 = 0 and (5) for stage 4 would imply that a43 = 

C42(C4 - C3)/C2 - 0. Furthermore, a42 = a32, so that stages 3 and 4 would be 
equivalent, and this would violate 5-minimality. If C3 = C5, then q32 = q2, and 
(5) and (7) for stages 3 and 5 lead to a54C4(C3 - c4)/4 = 0. If a54 = 0, stages 
3 and 5 would be equivalent. If c4 = 0, then a42 = a43 = 0, so that stages 
1 and 4 would be equivalent, and either situation would violate 5-minimality. 
Otherwise, C3 = c4, which has just been precluded. Alternatively, choosing one 
of the nodes equal to zero also leads to equivalent stages, again violating 5- 
minimality. Only the choice C4 = C5 leads to an acceptable result. In this case, 
either a54 = 0, which leads to the violation of 5-minimality, or else C3 = C4 or 
C3 = C4/2. Only the latter of these is acceptable, and in this case, F has rank 
3, and a54 is arbitrary, but must be chosen nonzero. 

The remaining stages are easily obtained. The five coefficients for stage 6 
are uniquely determined by (4) with P6 = 2 and (5)-(7) if C2 $A 0, and {cl = 
0, C3, C4, C6} are distinct. For stage 7, choose a76 by equating the ratios of 
corresponding sides of the two equations 

(10) a87a76C6(C6 - C3)(C6 - C4) = jC(C - C3)(C - c4)dcdc 

and 

(10') a87C7(C7 - C3)(C7 - C4)(C7 - C6) = j C(C - C3)(C - C4)(C - c6)dc. 

(This requirement is sufficient with the following constraints on stage 8 to imply 
that E7 a8iai2 = 0.) The remaining five coefficients for stage 7 are uniquely 
determined by (4) with p7 = 2 and (5)-(7); the matrix is nonsingular because it 
is the same matrix as for stage 6. The seven coefficients of stage 8 are constrained 
by (4) for P8 = 5 and the annihilation of the first and third expressions in (8). 

The choice of coefficients ensures that the vectors in Q = {e, Ce, C2e, 
C3e, C4e} and SC are linearly independent. Hence, the weight functions can 
be chosen to satisfy (1"), and to be orthogonal to Sc . Since Sc spans T's, it 
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follows that all of the order conditions are satisfied by the continuous method. 
Furthermore, this type of method admits stage-reuse. Observe that both stage 8 
and the continuous method at the point u = 1 are two stages of order 5. Since 
the weights for these two stages are uniquely determined by the stages available 
for each, and eight independent order conditions are satisfied, it follows that 
the weights must be the same, and in particular, b (1) = 0. 

Let us now consider the construction of a more general CERK method of 
order p. We need to choose coefficients of A and nodes of c so that, for the 
s x Np matrix Yp, there is a p x s solution Bp to the matrix problem 
(11) Bp'Fp=Gp, 
where Gp is the p x Np matrix with (Gp)ij = dij/i. For a p-minimal method, 
the rows of 'p will be linearly independent, 'p will have p linearly indepen- 
dent quadrature columns, and the Np - p subquadrature columns remaining 
as 'p will form an (s - p)-dimensional subspace that will be orthogonal to 
the rows of the solution matrix Bp. In particular, bt(u) = (u, u2, ... , uP)Bp 
is the vector of weight functions for such a continuous method. Only some 
p-minimal methods are p-optimal, and for p = 5, some results are useful. 

Lemma 1. For each 5-optimal CERK method, the following statements hold: 
(a) the number of stages is s = 8, and IP5 has rank 3; 
(b) c2 $ 0; 
(c) if q2 = 0, then c3 0 and a32 $ 0; 
(d) if q2 = q2 = 0, then either Sc = {q2, Aq2, CAq2} or SA = {q2, Aq2, 

A2q2} is a linearly independent set, and this independence occurs over 
stages 2, 3, and 4; 

(e) at least six weight functions are nonzero. 

Proof. (a) Owren and Zennaro [5] establish that at least eight stages are needed 
for a method of order 5, and, by construction, that eight-stage methods of 
order 5 exist. Observe that the five quadrature conditions of (1") imply that 
rank(B5) > 5, and so its nullspace, which contains the columns of T' , must 
have dimension not greater than 3. If '5 has rank less than 3, then it would be 
possible to solve all the order conditions of (11) with fewer than eight stages. 
Hence, the result follows. 

(b) If c2 = 0, stages 1 and 2 would be equivalent, and this would contradict 
5-minimality. Hence, c2 $ 0. 

(c) If C3 = 0, then q2 = 0 implies that a32 = 0, so that stages 1 and 3 
are equivalent, and this would contradict 5-minimality. Hence, C3 $ 0, and 
further, q2 = 0 implies that a32 = c2/(2c2) $ 0. 

(d) Assume that the vectors of Sc are linearly dependent. Since q, = q3 - 

q2 = 0 and C3a32q2 $ 0, then every nonzero linear combination of Aq2 and 
CAq2 is linearly independent of q2. The linear dependence of SC then implies 
that (C - c31)Aq2 = 0. Thus, either C4 = C3 or a42 = 0. Now suppose that 
a43 = 0. Then C4 = C3 and q2 q42 = 0 would imply the equivalence of stages 
3 and 4, a contradiction to 5-minimality. Otherwise, a42 = 0 and q42 0 
would imply that stages 1 and 4 would be equivalent, again a contradiction to 
5-minimality. Thus, a43 $ 0, and so the form of q2 implies that SA is linearly 
independent. Hence, at least one of SC or SA is a linearly independent set 
and, as such, would be a basis of the column space of P'5. 
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(e) The arguments used to prove this result are intricate and may be of in- 
terest. A sketch follows, and a complete proof may be found in the Appendix 
of [1 1]. The quadrature conditions imply for any four nodes that 

8 4 4 

(12) E b'(u) Fj (c ik) = j(u- cik) , 
i=l k=1 k=1 

and this implies that at least five distinct nodes exist with nonzero weights. If 
there were precisely five nonzero weights in the vector bt(u), and P were the 
projection onto the support of bt(u) (a subspace of ]R8 which is spanned by 
P Q), P would annihilate the columns of '5 . This would imply that bi(u) :# 0 
only for i = 1, 5, 6, 7, 8 and that 

(13) [A(C- C5I)q2], = [q4 - (C2 + c5)q3 + C2C5q2], = 0, i = 5, 6, 7, 8. 

The four conditions (13) for i = 5, 6 contradict C2 $ 0 and the distinctness 
of the remaining nodes. Hence, at least six weights of bi(u) must be non- 
zero. a 

For the 5-optimal CERK methods derived in [6], Sc is a linearly independent 
set of columns of T', and is necessarily a basis for its column space. Hence, 
it follows that the linear dependence expressed by (5)-(7) is necessary for the 
CERK methods of this design. 

To construct more general methods, it would be helpful if a basis for the 
column space of TP could be constructed generically, and the next result moves 
in this direction. 

Proposition 1. For any CERK method of order p with DSO = d, Sd-l 
{qd+l Cqd+l, ..., CP-d-2qd+l} is a linearly independent set of columns of 

TP 

Proof. Since the dominant stage-order DSO = d, there are one or more dis- 
tinct nodes ci for which Ecj =c bj(u)q4+1 $0 . Suppose that {cI, j= 1, 
p - d - k} are precisely the distinct nodes with this property ( k < 0 is possible). 
Then if k > 0, the order conditions imply that 

s 

(14) j bi(u)(ci - c11) (c1 -clpdk-)qf+' = 0. 

Exactly one term on the left side is nonzero which is impossible. Thus k < 0 
and it follows necessarily that there are at least (p - d) distinct nodes with 
qf+' $ 0. Since SP-d-l is a subset of (p - d - 1) columns of T'p , the I S~~~dP 
distinctness of (p - d - 1) nodes for which qi1+1 $ 0 is sufficient to establish 
that the vectors of SP-d-l are linearly independent. 2; 

For example if c2 :$ 2c3/3, observe that (5) implies that q3 is a multiple of 
Aq2 so that {q2} U S22 could replace the basis Sc in the previous formulation 
of 5-optimal CERK methods with DSO = 2. For CERK methods of order 5 
with DSO = 1, we obtain a more complete characterization. 

Corollary. For each 5-optimal CERK method with DSO = 1, S3 - {q2 cq2, 
C2q2} is a basis for the column space of T'5. 
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Proof. For such a method, '5 has rank 3, and contains the three vectors of 
S3. By Proposition 1, S3 is a linearly independent set, and the result fol- 
lows. El 

In general, if Sj-P is a basis of the column space of 'P, certain properties 
are satisfied. 

Proposition 2. Suppose an s-stage continuous method of order p exists for which 
SS-P = {Ciq2, j = 0, 1, ...s - p - 1} forms a basis of the column space of 
'ps. Then, 

(a) at least s - p nodes corresponding to nonzero values of q? are distinct, 
and 

(b) if q = O, stage i has order at least p - 1 . Furthermore, if the method 
is p-minimal, then 

(c) for p > 5, q O = 0 for at least m indices of i = 2, 3, ... ,s where 
m = min(s - p - 1, 2p - s), and 

(d) for equal nodes, ci and cj, exactly one of q2 and qJ is zero, and 
exactly one is nonzero. (Hence, multiple nodes can have multiplicity at 
most equal to 2.) 

Proof. (a) If k is the number of distinct nodes with q2 $ 0, then there are at 

most k linearly independent vectors in the set S-P. Since this set of s - p 
vectors is a basis, k > s - p . 

(b) If q2 = 0, then because Ss-P is a basis of the column space of T'P I all 

entries of row i are zero. Since ql = 0 as well, this implies that all conditions 
of orders from 1 to p - 1 are valid for stage i. 

(c) Suppose that q 0 for k indices of i = 2,.. ,s. To show k > m, we 
use the fact that the number of linearly independent rows of a matrix must be 
no greater than the number of vectors that span its columns. Define the matrix 

Tp as that obtained by deleting the first column of Tp \and by replacing row i 

by a row of zeros for each i with qi = 0. Observe that q2 = 0, trivially, and 
that the first row of Tp is (1, 0, ... , 0). Since p-minimality implies the rows 
of T'p are linearly independent, it follows that Tp is an s x (Np - 1) matrix 
with s - 1 - k linearly independent rows. Also, define 

fI if q? $0, 
(15) 

e={1 ifq 0 

The condition bt(u)(q2)2 - 0 of order 5 implies that (q2)2 iS a column of TP, 
and hence that (q2)2 = (.II + A2C + . + AS_pCs-P-l)q2 for some constants 
{, j = 1, . . . , s - p}, or equivalently that 

(15) q = (AII + A2C + *+ AspCs-p e. 

The first p- 1 columns of Ip, which correspond to quadrature columns of 

Tp, are precisely {Ce, ... , CP-4}. As Ss-P is a basis of the column space of 

TP, (15') may be used to show that all remaining columns of Tp are spanned 

by the set {e, Ce, ... , C25-2p2}- . Thus, 'p has a column space spanned by 
the r+ 1 vectors {e, Ce, ... , CrT}, r = max(p - 1, 2s - 2p - 2), and contains 
exactly s - 1 - k linearly independent rows. Therefore, s - 1 - k < r + 1, or 

equivalently, k > s - 2 - r = min(s - p - 1, 2p - s) = m. 
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(d) If ci = cj and qi2 = qj] = 0, then rows i and j of T' are identical, 
and the method is reducible, leading to a contradiction to p-minimality. On 
the other hand, if both q7 :A 0 and qj2 :$ 0, then equation (15') is nontrivial 
for each of components i and j. Thence, equality of ci and cj implies that 
q2 = qj2. Consequently, rows i and j of Tp are the same. Again, this leads 
to a contradiction to p-minimality. O 

Corollary. Suppose for a 5-optimal CERK method, S3 = {q2, Cq2, C2q2} is 
a linearly independent set. Then DSO = 1. 
Proof. Since S3 c '5 and is linearly independent, it is a basis of the column 
space of ''5. To establish that DSO = 1, we need to show there is an i for 
which >cj=c, bj(u)qj? $A 0. Since S3 is a linearly independent set, there are at 
least three distinct nodes for which q7 $& 0. Now, for each pair of equal nodes 
ci, c;, Proposition 2(d) implies that exactly one of q7 and qj is nonzero. 
Hence, if DSO > 1, then for each i, Ecj=cj bj(u)qJ = 0, so that bi(u) = 0 
whenever qi $ 0, and there are at least three indices for which this is true. 
However, this contradicts Lemma 1(e). Hence, it follows that DSO = 1. [1 

For the remainder of this section, we consider only the construction of various 
types of 5-optimal CERK methods. Each type of method can be characterized 
by selecting a basis for the column space of 'P, and for each type there are 
various choices available. Each choice leads to a family of methods, or else to 
a contradiction to the existence of a family of a particular type. The arguments 
to preclude some types rely on the fact that two identical rows of '5 would 
violate 5-minimality. 

The main result characterizes all 5-optimal CERK methods with DSO = 
1. By the corollary to Proposition 1, 5S = {q2, Cq2, C2q2} is a basis for 
the column space of ''5. For these methods, certain coefficients are nonzero. 
Lemma l(b) implies that C2 :$ 0, and if q 2 = 0, Lemma 1(c) implies that 
a32 $ 0. It would then follow that (Aq2)3 = a32q22 0 while the third entry of 
each basis vector is zero, a contradiction. Hence, q 2 $ 0. Now since both q 2 
and q32 are nonzero, Proposition 2(d) implies that c2 : c3 (although possibly 
a32 = 0). Next, assume that q 2 = 0 , so that each entry in the fourth row of 
'5 is zero. If a43 = 0, then a42q 2 _ (Aq2)4 = 0, implying that a42 = 0. Thus, 
0 = q42 = -c42/2 so that stages 1 and 4 would be identical, a contradiction. 
Hence a43 $ 0, and in turn this implies that (A(C - C2J)q2)4 a43(C3 - C2)q32 54 
0, a contradiction to having all entries of row 4 in T' equal to zero. Thus, q2 
cannot be zero. Hence, elements 2, 3, and 4 of q2 are nonzero. Furthermore, 
by virtue of Proposition 2(d), the nodes {c2, c3, c4} are distinct. 

Since the rows of T' are spanned by S3 there are constants Jr, Kr, Lr, 
Mr, Nr , r= 1 ,2 , 3, for which 

(16) (Aq2) aijqj ={JI + J2(ci - C2)} q7 
j=l 

(17) qi3- aijcy L = Kj +K2 (Ci il )qi 
j=1 
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(18) (q7)2 = {LI + (Ci - C2) [L2 + L3(Ci - C3)]} q7, 

i-l 

( 19) (A(C - C2I)q2) 3 E aij(cj - C2)q1 (19) ~~~~~~~~~~j=1 

= {M1 + (Ci-C2) [M2 + M3(Ci-C3)]} q, 

and 
i-i C4 

(20) qi4 -Eai1jc -4 = {NI + (ci - C2) [N2 + N3(ci - C3)]} qi. 
j=1 

In (1-6) and (17), it is assumed implicitly that J3 = K3 = 0, and this requires 
justification, which is based on the following result. 

Lemma 2. If S3 - {q2, Cq2, C2q2} forms a basis of the column space of '5 
and in addition q2 = 0, then C4 = C5. 

Proof. Since q2 = 0, all entries in row 5 of '5 are zero, and by Proposition 
2(b) the first five stages of this method yield a discrete method of order 4 scaled 
for the endpoint c5. Butcher's derivation of such methods [1, p.177] implies 
that this is possible if and only if C4 = C5. (In consequence, it follows that 

4a43a32C2 = C4/24 $ 0, so each of a32, a43, a54 must be nonzero.) E 

Now suppose to the contrary, that J3 $ 0, and consider the right side of 
(16) extended to include the term J3(ci - c2)(ci - c3)q . Since CAq2 is also 
a column of ' , premultiplication by C of the extended form of (16) would 
imply that C3q2 is spanned by the basis S3. Together with the basis vectors, 
this would imply that V = (C - C2I)(C - c3I)(C - c4I)q2 would be spanned 
by S3, or equivalently by the basis {q2, (C - C2I)q2, (C - c2I)(C - c3I)q2} 
which is obtained by a triangular, unit diagonal composition of S3. Since each 
of q2, q32 q2 is nonzero, and nodes C2, C3, C4 are distinct, the representation 
of V in terms of the latter basis may be obtained using components 2, 3, and 4. 
This representation implies V 0, and this would imply that q? = 0 for each 
of i = 5, 6, 7, 8. (Even if ci =cj for some j = 2, 3, 4, we have q? =0 by 
Proposition 2(d).) In turn, this is found to be possible only if c2 = 0, c6 = 0 or 
C6 = C4, each of which would imply violation of 5-minimality. To establish this, 
observe that q2 0 implies by Lemma 2 that C4 = C5 . When q 2 = 0 as well, 

3 4~ 5 
q 3 = q4 = 0 by (17) and (20), respectively, and then these three conditions 
would imply that 

a62 = c6(3C2 - 4(C3 + C4)C6 + 6C3C4) d 

(21) 12C2(C2 - C3)(C2 - C4) 

a3 J C62(3C2 - 4(C2 + C4)C6 + 6c2c4) 

12c3(c3 - C2)(C3 - C4) 

Also, as stage 5 has order 4, (Aq2)5 = (A(q3-c2q2))5 = 0 can be used to compute 
a32 so that q2 = C2C3(2C3 - C5)/(C3 - 2c2). Then other order-4 conditions on 
stage 6 imply that 

0 = (A(C - c4I)q2)6 a62(c2 - c4)q2 + a63(c3 - C4)q3 

(21') i _2C_2(C4-C6)2 

4(C5 - 2C2) 
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which yields the stated restriction on the nodes. To avoid the resulting contra- 
diction, it follows that at most one of q5 and q6 can be zero, and consequently 
J3= 0. Furthermore, using the same argument on Cq3, it may be shown that 
K3 = 0. 

It is also possible to establish that a54a43a32 : 0 even if q2 $ 0. Observe by 
using stages 2 and 3 on .(16), we obtain 

(16') J1=O, J2= -a32C2 
(C3 -C2)(2a32C2 - c3) 

and on (17), we obtain 

(17') K -2C2 K2=2 (a32C2 -C3 + C2c3) )K=- --, K2=3(c3 - c2)(2a32c2 - c2) 

Now (16') implies a32 :$ 0, or otherwise we would get Aq2 = 0, a contradiction 
to the following result. 

Lemma 3. For a 5-optimal CERK method with DSO = 1, one has Aq2 0. 

Proof. Assume to the contrary that Aq2 = 0. In particular (Aq2)3 = 0, and 
so q 2 $ 0 implies that a32 = 0. Then, from (17'), K2 = 2/3, and in 
this case, (17) becomes q3 = 2Cq2/3. This is identical to ACc - C3e/3 = C 
(2Ac - C2e)/3, which implies that ACc = 2CAc/3. A different representation 
yields Ac2 = -2(Aq2) + 2A(Ac) = 2A(Ac) under the assumption. Since A is 
strictly lower triangular, then if (Ac)j = 0, j = 1, . .. , i - 1 , the latter expres- 
sion implies that (A Cc)i = 0 . If in addition ci $& 0, then the former expression 
implies in turn that (Ac)i = 0. 

For the methods considered, a32 = 0 implies that (Ac)j = 0, j = 1, 2, 3, 
and it follows, using the previous argument inductively, that (Ac2)j 0, j = 

1, 2, 3, 4, and then that (Ac)4 = 0 since C2, c3, C4 are nonzero. Further- 
more, if ci :$ 0, i = 5, 6, 7, then by induction it follows that Ac2 = 0. 
However, this precludes satisfaction of the order-4 condition, bt(u)Ac2 = u4/4 
when u :$ 0, and hence is not possible. 

Otherwise, if ci = 0 for some i = 5, 6, 7, we consider (18). For j = 

2, 3, 4, we have qj = (Ac)j - cJ/2 = -c/2 $ 0. Since coefficients L1, L2, L3 
in (18) are determined by stages 2, 3, 4, uniquely, it follows that in this case 
(18) becomes (q2)2 = _C2q2/2. Thus, if c, = 0 for some i = 5, 6, 7, then 
q2 = 0, and so this stage would be equivalent to stage 1 thus violating 5- 
minimality. Hence, the original assumption is impossible, and so Aq2 2 0. 

To show that a43 $A 0, assume otherwise. Then (16) and (17) for stage i = 4 
give two expressions from which the product term in a32a42 may be eliminated. 
Then distinctness of the nodes C2, c3, C4, and the hypothesis a43 = 0 would 
imply that a32c2 = a42c 2. Since a32 $A 0, substitution of this expression for 
a42 into (16) for i = 4 would imply that q42 = 0 a contradiction to the remark 
preceding (16). Hence, a43 $ 0. 

To prove that a54 $ 0, assume otherwise. Also, since qi :$ 0, i = 2, 3, 4, 5, 
Proposition 2(d) implies that c2, C3, c4 and c5 are distinct. Recall that c2 $ 



CERK METHODS OF ORDER 5 1135 

0. Also C3 $ 0, or else (17) for i = 4, 5 give values for a42 and a52, 
respectively, and then ( 1 8) for i = 5 implies that a32 (C4 - C5 ) (C2 - C5) = 0 which 
is not possible. Then (16) and (17) for i = 4, 5 form four linear equations 
in a42, a43, a52 and a53 with coefficients in terms of the nodes and a32 . On 
solving these formally and substituting, we find that (18) for i = 5 is valid only 
if 

(22) c25a232(C2 - c5)(C3 - C5)(C4 - C5)(2a32c2 + C2C3 - C3)2 = 0, 

and this can hold only if the final factor is zero. Thus, 

(22') a32 = C3(C3 - c2) 

and in this case, each of a42, a43, a52 and a53 can be evaluated by their formal 
expressions since C3 $ 0. 

This choice of a32 and (16') lead to J2 = 1/2, and LI = -c 2/2, L2= 
-c2/2, L3 = O, so that 

(18') qi =-c2ci/2, i=2,3,4, 5. 

Also (18') holds trivially for i = 1 . Using (18') and (16), we obtain -c2(Ac)6/2 
_ -la6i(-c2ci/2) = 1a6jqi2 = (c6 - c2)q6/2. If we assume q 

(Ac)6 - c62/2 = 0, then this would imply that c6 = 0, which would preclude 5- 
minimality. Hence, q2 $ 0, so that (18') holds for i = 6 as well. This argu- 
ment may be repeated to imply that -c2(Ac)7/2 = (C7 - c2)q2/2, and therefore 
that q72 0. However, this is impossible since Proposition 2(c) implies that 

q- = 0 for at least two stages with i > 2. Hence, we conclude that a54 0. 

Theorem 1. (a) There are three six-parameter families of 5-optimal CERK meth- 
ods with DSO = 1. 

(b) There are two three-parameter subsets of such methods that admit stage- 
reuse. 

(c) For each 5-optimal CERK method with DSO = 1, one has q2= 0. 

Proof. Because the proofs are quite technical, only sketches of how to construct 
the methods are given. The complete detail of these proofs may be found in 
[1 1]. 

(a) Construct a five-stage explicit Runge-Kutta method of order 4 scaled to 
the endpoint c5, so that q; :$ 0, i = 2, 3, 4. (See Case 1 with C3 : 1/2, 
[1, p.179].) Appropriate choices of the constants in (1 6)-(20) are sufficient to 
satisfy the continuous order conditions, if in addition, 

(23) C6 =22C3C4 
2C2C4 + 2C3C4 - 2C2C3 - C 

With either one or both of q2 and q 2 equal to zero, three families of methods 
in the six parameters {C2, C3, C4, C7, C8, a82} are obtained. 

(b) Of these methods, some are of the FSAL type. For these, it is necessary 
that c8 = 1, b8 = 0, and either 

C4(2C2 - C4)(60c2 - 105c4 + 48) 
c c(60c3+ 80C2 - 270C + 144) - C420C -2 1 Oc4 + 96)' 
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or 

C3= -C4C7(2C2 - c4)(12 - 15(c4 + C7) + 20c4c7) 

( 24' ) [C2(C2(60C2 - 160c4 + 90) - c7(60c3 - 40C42 - 90C4 + 72) 

+ C4(40C2 - 60c4 + 24)) + 2c4c7(12 - 15(c4 + C7) + 20c4c7)] 

Either choice yields a family of methods in the three parameters {C2, c4, C7-}. 
(c) This final result is established by contradiction involving an intricate ex- 

pression obtained for a32 using MAPLE. a 

This result characterizes all 5-optimal CERK methods with Sj3 as a basis of 
the column space of '5 . Among those methods with q 2 = 0 it is not possible 
to choose one for which stage 7 is the propagating stage (again, see [11] for the 
proof). 

In summary, the Corollary to Proposition 1, and Theorem 1, characterize 
all eight-stage order-5 continuous methods with DSO = 1. Some particular 
examples are displayed in the next section. 

The rest of this section surveys other 5-optimal CERK methods of order 5 
that exist and each will have DSO > 2. As might be expected from the treat- 
ment at the beginning of this section, the characterization of all other eight-stage 
continuous methods of order 5 is based on the results of Owren and Zennaro [5, 
6]. 

Proposition 3. A 5-optimal CERK method with DSO > 2, SOV = (5, 1 5, 

P4, Ps, P6, P7, P8) and Cj i C2, j > 2, must satisfy pj > 2, 3 < j < 8. 
Proof. The detailed proof of this result may be found in the Appendix to 
[11]. a 

This result helps to identify the nature of continuous methods with DSO = 
2. To establish whether or not there exist 5-optimal methods with DSO > 2 
having one or more nodes coincident with c2 and at least one stage other than 
the second with stage-order 1 would be a more tedious version of the same 
argument, and remains as an open question. 

Arguments developed at the beginning of this section establish that 2c3 = 

C4-C5 is sufficient to imply the existence of 5-optimal continuous FSAL meth- 
ods with DSO = 2 as derived by Owren and Zennaro [6]. That development 
can be extended easily to characterize related continuous methods [5] without 
stage-reuse. To show that this constraint on the nodes is necessary for both 
types of methods, more is required. 

Proposition 4. All 5-optimal CERK methods for which SOV = (5, 1 , p3, p4, p5, 

P6, P7, P8) with pi > 2, i > 3 must satisfy 2c3 = C4 = c5. 
Proof. First, we show that Sc = {q2, Aq2, CAq2} is a basis for the column 
space of T'5 . Suppose to the contrary that Sc is a linearly dependent set. As 
q2$ : 0, and by Lemma 1(c), a32 :$ 0, the triangularity of A and the linear 
dependence imply that (C - c3I)Aq2 2 0. Then Lemma 1(d) implies that 
a43 :$ 0, and that S - {q2 Aq2, A2q2} is a basis of the column space of 
wT 

Now, each of q3, Cq3, Aq3, CAq2, q4 can be represented in terms of the 
basis SA . For q3, this representation is 
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(25) q = Jlq2 + J2Aq2 + J3A2q2, 

and with (C - c3I)Aq2 = 0, the first four stages yield J1 = 2c2/3, J2 = 

(4c3 - 6c2)/(3c2), and J3 = 4(c22(C4 - C3) - a43C2)/(3a43C32C2). Suppose that 
J3= 0, so that a43 = c 2(c4 - c3)/c2. Since a43 $ 0, C4 $ C3. In turn, 
(C4 - C3)a42q2 = 0 would imply that a42 = 0, and in this case, q2= 0 would 
imply that a43 = c42/(2c3), which with the previous expression for a43 would 
imply that C4 = 3c3/2. That is, if J3 = 0, then a42 = 0, C4 = 3c3/2 and a43 = 

9c3/8. Furthermore, the assumption implies for stage 5 that (c5 - c3)a52 = 0. 
If a52 = 0, then the resulting representations of q3 and q4 imply that c5 = 0, 
C3 = 0 and a53 = 0, or c5 = 3c3/2 and a53 = 9c3/8. The first two imply the 
equivalence of stages 1 and 5, and the third leads to the equivalence of stages 
4 and 5. Otherwise, if c5 = C3, the representations of q3 and q54 imply that 
a2 = c32/(2c2) and a53 = a54 = 0, so that stages 3 and 5 would be equivalent. 
Since each of these contradicts 5-minimality, it follows that J3 $ 0. 

Next, using stages 2, 3, 4 to represent Aq3 in terms of SA, we obtain 

(25') Aq3 = JAq2 + J2A2q2 

since the form of q2 implies its coefficient in this expansion is zero. On com- 
puting the corresponding representation of Cq3, we find 

(25") Cq3 = J1c2q2 + J2c3Aq2 + J3c4A2q2 

by replacing J2c3Aq2 by J2CAq2 after finding the second cpefficient. Then, 
substituting (25) into the left side of (25") yields 

(26) 0 = J1 (C - c2I)q2 + J2(C - c3I)Aq2 + J3(C - c4I)A2q2 J3(C - c4I)A2q2 

with the final equality following from the form of q2 and CAq2 - c3Aq2. 
Similarly, substituting (25) into (25') yields 

(26') 0 = J3A3q2. 

Since J3 # 0, then for stage 5, (26') implies that a54 = 0. Then (26) implies 
that (c5 - c4)a53 = 0. Also the assumption implies that (C4 - C3)a42 = 0 and 
(c5 - c3)a52 = 0 . If a52 = a53 = 0, then q2 = 0 would imply c5 = 0, and hence 
that stages 1 and 5 are equivalent. If a53 = 0 and c5 = c3, then q2 = 0 would 
imply that stages 3 and 5 are equivalent. If a52 = a42 = 0 and c5 = C4, then 
q2 =0 would imply that stages 4 and 5 are equivalent. Since each of these 
contradicts 5-minimality, the only feasible choice remaining is C3 = C4 =C5 
and a54 = 0 . 

In the latter case, the assumption implies that (c6 - c3)a62 = 0. If C6 =C3, 
then q62 = 0 can be used to obtain a62 since c2 $ 0. Since a43 $ 0 and 
a54 = 0, (26') can be used to obtain a64 = -a60as3/a43. These choices make 
conditions for stage 6 consistent. However, in order to satisfy a72 = 0, q2 - 

0, and (26'), it follows that C7 = C3 is required if c7q3 and q4 are to be 
represented by the basis SA . However, this would preclude the distinctness of 
at least five nodes, a contradiction to satisfying the five quadrature conditions. 

Otherwise, if a62 = 0, then q62 = 0 yields a63, and (26') for stage 6 yields 
a64. Then the representation of q3 implies either c6 = 0 or C6 = C3. If 
C6 = 0 and q2 = 0, the representations of q 3, q3 and q4 imply that C7 = 0, 
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precluding the distinctness of at least five nodes. Otherwise, if c6 = C3 and 
q2 = 0, the representations for q3, (Aq3)7 and c7q3 imply that c3 = c7, which 
again precludes the distinctness of at least five nodes. Finally, since a62 = 0 
implies c6 = 0 or C6 = c3, the choice c7 - c3 would preclude the distinctness 
of five nodes. We can now conclude that (C - c31)Aq2 $ 0. 

It follows that SC = {q2, Aq2, CAq2} is a basis of the column space 
of 35. However, in the continuing proof it is more convenient to represent 
the vectors q3, Aq3, Cq3, A2q2 and q4 in terms of the equivalent basis 

c= {q2, Aq2 (C - c3I)Aq2}. Then we shall show that J3 = 0 in the 
representation 

(27) q3 = J1 q2 + 32Aq2 + J3(C-c3I)Aq2, 

in order to establish the stated restriction on the nodes. 
By obtaining the representations of Aq3 and Cq3 in terms of Sa and com- 

bining them with (27), it may be shown that 

(28) J3A(C - c3I)Aq2 = 0 

(using an argument similar to that used for (26')). If 13 $ 0, this implies that 
a54(c4 c3) = 0. If c4 = c3, then the representation of A2q2 by Sq implies 
that a43 = 0, which leads to the equivalence of stages 3 and 4, a contradiction 
to 5-minimality. If a54 = 0, since c3 $ 0, we can solve q2 = 0 for a53. 
Then the representation of q3 and (Aq3)5 give equations in terms of a42, a52 
and the nodes. For these equations to be satisfied, one of four constraints is 
necessary: (i) c3 = c5, (ii) c4 = c5, (iii) C2 = 2c3/3, or else (iv) a42 = C2/(2C2), 
a52 = c52/(2c2), and either c3 = c5 or c4 c5. Since the final alternative is 
accommodated by the first two, we need only consider the first three alternatives. 
First, if c3 = c5, either c3 = 0 or stages 3 and 5 are equivalent, both of which 
are contradictions. Second, if c4 = c5, then the representation of A2q2 implies 
a42 = a52, implying the equivalence of stages 4 and 5, a contradiction, or else 
c4= 0. For the latter case, c4 =c5 = 0, and all conditions for stage 5 are 
consistent. We need to consider stages 6 and 7. The representations of (Aq3)6 
and q6 require that either c6 = 0 or C6 = c3. Then either value for c6 and the 
representations of (Aq3)7 and q7 require that either c7 = 0 or C7 = c3 . These 
constraints on the nodes imply that cl = c4 = c5 = 0, and that c6 and c7 are 
equal to either zero or to c3 . In any of these cases, there will be no more than 
four distinct nodes for the eight stages. Since at least five nodes must be distinct 
to satisfy the quadrature conditions, this is a contradiction, so that c4 $ c5 . 

Finally, if C2 = 2c3/3, combining the representations of q3 with each of 
those for cAq3, (A2q2)5, and q5, implies c4 = c5, which has been eliminated, 
C2 = 2c5/3, in which case stages 3 and 5 are equivalent, or a42C5 = as2c4, which 
leads to the equivalence of stages 1 with 4 or 5. Since all of these possibilities 
preclude 5-minimality, it follows that 13 = 0 in (27). 

Since 13 = 0, it follows that (27) is identical to (5). The argument developed 
from (5) shows that the nodes must be restricted as stated in the theorem. El 

This result characterizes all of the continuous methods found by Owren and 
Zennaro. The remaining results examine the particular continuous methods 
with DSO > 3. 
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Proposition 5. There is no 5-optimal CERK method for which (4) is valid for 
the SOV = (5, 1, 2, p4, p5, P6, P7, P8) with pi > 3 when i > 4. 

Proof. Suppose, to the contrary, that such a method exists. By Lemma 1, T'5 
has rank 3, and C2, C3 and a32 are nonzero. By the SOV, q2 is a multiple of 
(0,~ 1, 0, 0, 0, 0, 0, 0), and q3 iS a multiple of (?, q23/q33 ,I 0,~ 0,~ 0, 0, 0), 
so that a basis for the column space of '5 can be selected to include q2 and 
q3. Hence, bt(u)q2 = bt(u)q3 = 0 implies that b2(u) = b3(U) = 0, and so 
b(u) is orthogonal to each of q2, Cq2, C2q2 (q2)2 q3 Cq3. Also, if b(u) 
is orthogonal to Aq2, it is also orthogonal to ACq2. Hence, for the method 
to have order 5, it is necessary and sufficient that the coefficients and weights 
be restricted so that b(u) satisfies (1'), and is orthogonal to the seven vectors 
q2, q3, Aq2, Aq3 CAq2, A2 q4. 

We now show that any possible choices for stages 4 and 5 lead to a contradic- 
tion. If c4 = 0, then q42 = a42C2 + a43C3 = 0 and q3-a42c2 +a43C3 =0 imply 
either a42 = a43 = 0, or else C2 = C3 and a42 = -a43 $ 0. If a42 = a43 = 0, 
stages 1 and 4 would be equivalent, a contradiction to 5-minimality. Other- 
wise, if c2 = C3 and a42 = -a43 #A 0, we can show that c5 = * = c8 = 0, 
and this is impossible since at least five of the nodes must be distinct in order 
to satisfy the quadrature conditions (1'). To show that c5 = = = 0, ob- 
serve first that a42 $ 0 together with arguments above imply that q2, q3, Aq2 
is a basis for the column space of '5. Furthermore, c2 = C3 and c4 = 0 
imply that q44 = 0. Hence q4 iS spanned by the basis, and the first four 
stages imply that q4 = (-c2/2)q2 + (3c2/2)q3. Since pi > 3 for i > 3, one 
has qi = q 0 = ? for i > 3, and this implies that q 4 = 0 as well. Now 
assume that C4 = = Ck- = 0. Then qk= = q= qk4 = 0 imply that 
ak2C + ak3C3 = CTI C dc for T = 2, 3, 4. Since C2 = C3, this in 
turn implies that f k c(c - c2)2dc = 0, which is possible if and only if Ck = 0. 
Hence, the equivalence of remaining nodes to zero follows by induction. 

Alternatively, if c4 : 0, suppose that a42 = 0. Then q4 = q- = 0 implies 
that c4 = 3c3/2, and a43 = 3c4/4. Furthermore, q4 =9C3/643 0,and 
so {q2, q3, q4} forms a basis of the column space of '5 . The first four 
stages are determined, and these are sufficient to characterize the representations 
of Aq2, Aq3, CAq2, A2q2 in terms of the basis. Now, the coefficients of 
stage 5 are determined by q 2 = q53 = 0, and the representation of (Aq2)5. 
Substitution of these coefficients into the representations of (Aq2)5 and (A2q2)5 
admit only two choices for nodes C3 and c5. The first, C3 C5 = 0 leads to 
the equivalence of stages 5 and 1, a contradiction to 5-minimality. The other 
requires that c5 = 3C3/2 = c4, a54 = 0, and that stages 4 and 5 are equivalent, 
again contradicting 5-minimality. 

It follows that c4 and a42 are nonzero. Thus, {q29 q3, Aq2} is a basis 
of the column space of T"5. In this case, the coefficients a5i, i = 2, 3, 4, 
are determined by q2 = q3 = 0 and the representation of q 4 in terms of the 
basis. Then the corresponding representations of Aq3, CAq2 and A2q2 are 
possible only if c5 = 0, C4 = C5 or C3 = 3c2/2. If c5 = 0, stages 5 and 1 
are equivalent, and this violates 5-minimality; if C4 = C5, stages 4 and 5 are 
equivalent, again violating 5-minimality. Finally, if C3 = 3c2/2, then p3 > 3, 
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and this contradicts the specified value in the SOV. This establishes that no 
method of this type exists. O 

Proposition 6. Suppose that the nodes and coefficients of an eight-stage CERK 
method satisfy (4) for the SOV = (5, 1, 3, P4, P5, P6, P7, P8) with pi > 
3, i > 4. Then this method has order 5 if and only if the coefficients are 
determined by (6) and (7), and the weights are determined by (1'). 

Proof. Lemma 1 establishes that each of C2, C3, and a32 is nonzero. The form 
of the SOV implies that both q2 and q3 are multiples of (0, 1, 0, 0, 0, 0, 0, 0) 
and are nonzero since c2 :# 0. Hence, bt(u)q2 - 0 implies that b2(u) = 0, and 
so the vector b(u) is orthogonal to each of q2, Cq2, C2q2, (q2)2 , q3, Cq3. 
Also, if b(u) is orthogonal to Aq2, it is also orthogonal to ACq2 and Aq3. 
Hence, for the method to have order 5, it is necessary and sufficient that the co- 
efficients and weights be restricted so that b(u) satisfies (1'), and is orthogonal 
to the five vectors q2, Aq2, CAq2, A2q2, q4. The five linearly indepen- 
dent quadrature conditions imply that the column space of 'P, which is the 
nullspace of b(u), has dimension three again. Next, we show that the three 
vectors q2, Aq2, CAq2 are linearly independent so that this set forms a basis 
of the column space of ''5. 

As q3 = 0 and entry 3 in each of Aq2 and CAq2 is nonzero, these two 
vectors are linearly independent of q2. To show the two vectors are linearly 
independent of each other, assume otherwise, so that (C - c3I)Aq2 = 0. In 
particular, (C4 - C3)a42 = 0 . However, q3 = q3 = 0 implies that C2 = 2C3/3. 
Then if c4 = c3 as well, q32 = q33 = q43 = 0 would imply that a43 = 0, 
and a42 = a32, so that stages 3 and 4 would be equivalent, a contradiction to 
5-minimality. Hence, C4 # C3, and so a42 = 0, implying in turn that C3 = 
2c4/3, and a43 = 3c4/4 : 0. Now, (A2q2)4 = a43a32q2 # 0, although q42 and 
(Aq2)4 = a42q2 are both zero. This implies that the columns of '5 would 
be spanned by {q2, Aq2, A2q2}, and that q4 would be a linear combination 
of these vectors. Indeed, since the only remaining arbitrary choice for the first 
four stages would be c2, a little computation yields 4q4 = (2c22I + c2A + 3A2)q2 . 
This condition together with q2 = q3 = 0 determine the coefficients of stage 
5. However, in this case (c5 - c3)a52 = 0 is also required. The choice c5 = C3 
with the computed coefficients of stage 5 would imply that stages 5 and 3 are 
equivalent, a contradiction to 5-minimality. Otherwise, a52 = 0 would imply 
either that c5 = 0, and also that stages 1 and 5 are equivalent, or else that c5 = 
c4, and that stages 4 and 5 are equivalent. Since both alternatives contradict 
5-minimality, it follows that Aq2 and CAq2 are linearly independent. Thus, 
{q2, Aq2, CAq2} is a basis for the column space of '5 . Hence, (6) and (7) 
together with (1') are necessary for this type of method to have order 5. Since 
the SOV shows that (5) holds for K1 = K2 = 0 when C2 = 2C3 /3, the treatment 
at the beginning of this section shows that the assumptions are sufficient, and 
the result follows. O 

Because these methods are characterized by (5)-(7) with C2 = 2C3/3, and 
(1'), it follows that they form a subset of the family found by Owren and 
Zennaro [6]. For those methods with pi > 3 for some values of i = 4, 5, 6, 7, 
additional constraints must be imposed on the nodes or coefficients. Two cases 
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of interest obtained by appropriate computation identify continuous methods 
with stage-reuse. 

Theorem 2. (a) There exists a FSAL family of 5-optimal CERK methods with 
the SOV = (5, 1, 3, 3, 3, 3, 3, 5) in the parameters c2, C6, C7 and a54. 

(b) There exist two FSAL families of 5-optimal CERK methods with the 
SOV = (5, 1, 3, 3, 4, 4, 4, 5) in the single parameter c2 . 

Proof. (a) This type is characterized by Owren and Zennaro [6], and also at the 
beginning of this section, so 2c3 = = C5. Furthermore, p3 = 3 requires the 
choice c2 = 2c3/3. 

(b) Since q3 = 29c/64 #O, and c4 = 3C2 implies that q4 = 99C/2#0, 

it follows that p3, p4 < 3. In order to have p5 = 4, a54 must be constrained. 
To have P6 = 4, one must have c6 = 5c2/3. To have p7 = 4, C7 must be the 
zero of a quartic. Two values, C7 = 0 and C7 = C6 lead to equivalent stages, 
each of which violates 5-minimality. The other two values lead to methods that 
have real coefficients only if 
(29) 
1822500c2 - 2430000c5 + 1291500C4 - 322200C3 + 35625C2 - 1320C2 + 16 > 0. 

Values of C2 in [0,1] that satisfy (29) lie outside a subinterval approximately 
equal to [.21536,.27767]. Some, but not all, choices will lead to methods for 
which all nodes lie in the interval [0,1]. E 

Other combinations of values of pi, i = 5, 6, 7, are possible. However, 
Theorem 2 identifies the extreme choices, and none lead to a method with 
DSO = 4. This completes the classification of 5-optimal CERK methods. 

3. SOME METHODS 

We conclude the paper with examples of several methods. Only the discrete 
coefficients are given. Weights for the final stages of orders 4 and 5 are identified 
as b4 and b5, respectively. For each FSAL method, stage 8 is the same as the 
propagating stage of order 5, so that these coefficients are not repeated. For 
each method in Tables 2-6, which have DSO = 1, the eight weight functions 
{bi(u), i = 1, ... , 8} for the interpolant may be obtained by solving the 
quadrature conditions (1') and the three constraints bt(u)q2 = bt (u) Cq2 = 
bt(u)C2q2 = 0. Otherwise, for methods in Tables 7-9, for which DSO > 2, 
the weight functions are obtained by solving the quadrature conditions and the 
three constraints (bt(u))2 =(bt(u)A)2 = (bt(u)CA)2 = 0. 

Arbitrary nodes were selected in order to illustrate structural differences be- 
tween the various types of methods. Thus, it will be observed that for each pair 
of methods, that many (and for the first three methods all) of the nodes are 
selected to be equal. Otherwise, the nodes were selected so that the coefficients 
could be represented exactly with a small number of digits. It is quite likely 
that more efficient methods can be obtained by other choices of the nodes (see 
[6]). 
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TABLE2. A CERK(8:5) method with SOV = (5, 1, 1, 1, 4, 1, 1, 4) 

0 

1 1 
s s 

1 2 5 
3 9 9 

1 7 3 27 
2 20 16 80 

1 7 125 9 5 
2 96 576 64 72 

4 218 1903 121 440 - 352 
9 10935 6561 1215 6561 10935 

7 222283 3122109 1949103 49959 83187 7932249 
8 20480 180224 81920 2048 - 2560 90112 

3 3 0 81 21 63 50301 3 
4 256 32 8 32 7936 62 

b5 13 125 297 88 16 6561 256 208 
72 486 650 135 3 1240 489645 225 

b - 1 875 9 10 12 1215 0 0 
b4 | - 24 396 4- -109 88 

TABLE3. A CERK(8:5) method with SOV =(5, 1, 1, 1, 4, 1, 4, 1) 

0 

1 
1 _ 
3 

1 2 5 
3 9 9 

1 7 3 27 
2 20 16 80 

1 7 125 9 5 
2 96 576 64 72 

4 218 1903 121 440 352 
9 10935 6561 1215 6561 10935 

7 1939 1610875 16317 8575 2793 535815 
8 12288 1622016 16384 18432 512 90112 

3 422809 o 19239 25597 2183137 289575 4477 
4 165120 6880 - 2064 61920 11008 3870 

bS 13 151375 639 73 4 12393 208 43 
168 766656 3520 792 9 42592 693 19965 

b4 -13 39 875 9 10 12 1215 0 0 24 396 9 88 
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TABLE4. A CERK(8:5) method with SOV =(5, 1, 1, 1, 4, 1, 4, 4) 

0 

1 1 
s s 

1 2 5 
3 9 9 

1 7 3 27 
2 20 16 80 

1 7 125 9 5 
2 96 576 64 72 

4 218 1903 121 440 352 
9 10935 6561 1215 6561 10935 

7 1939 1610875 16317 8575 2793 535815 
8 12288 1622016 16384 18432 512 90112 

3 86973 1 80163 1339 405241 131949 757 
4 9632000 2 172000 8600 172000 55040 75250 

bS 977 125 33 88 -848 243 -256 688 
1512 534- 10 27 27 8 189 135 

b 4 -13 875 9 10 12 1215 0 0 24 396 4 9 88 

TABLE 5. A FSAL CERK(8:5) method with SOV= (5, 1, 1, 1, 4, 1, 1, 5) 

0 

1 1 
3 

_ 

21 7791 2415 
128 32768 - 32768 

1 501 5991 11008 
2 3920 2576 5635 

1 53 1375 32768 35 
2 504 1656 62307 387 

21 5089613 249653393 12627767296 12310270 2487177 
31 18470420 84963932 4566811345 39711403 4617605 

7 3551 24427521 3985488 120393 66339 512375409 
8 56320 19171328 5276315 242176 309760 889382912 

1 13 290125 33554432 112 2 923521 45056 
126 413586 78569127 1161 Ti 17410239 154791 

b4 13 56375 16777216 560 2 148955 0 0 126 15318 6043779 387 11 118437 
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TABLE6. A FSAL CERK(8:5) method with SOV =(5, 1, 1, 1, 4, 1, 4, 5) 

0 

1 1 
s s 

7 1911 1015 
84 192 8192 

1 197 4465 1600 
2 784 3248 1421 

1 23 125 4096 7 
2 168 232 15225 75 

7 34379 4855 - 17097728 283318 3717 
5 1500 116 271875 9375 125 

7 623 8575 14224 2401 343 1225 
8 1536 29696 25665 3840 256 60416 

9 25 2097152 112 94 25 2048 
70 58 10479875 1125 405 33453 6615 

b4 31 25 1048576 112 22 25 0 0 42 58 898275 75 9 531 

TABLE 7. A FSAL CERK(8:5) method with SOV = (5, 1, 2, 2, 2, 2, 2, 5) 

0 

1 1 
s s 

1 3 5 
4 32 32 

1 1 5 1 
2 8 8 

1 1 25 _3 1 
2 8 8 2 

9 207 405 297 1485 297 
14 1372 686 343 9604 4802 

7 49 1855 7945 12845 315 156065 
8 36096 12032 16544 24064 24064 198528 

1 -83 0 248 41 1 2401 6016 
945 825 180 36 38610 20475 

b4 - i ? 433? 0 40 1 343 0 0 9 33 4 1 9 
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TABLE 8. A FSAL CERK(8:5) method with SOV= (5, 1, 3, 33, 3, 3, 5) 

0 

1 1 
5 5 

3 3 9 
10 40 40 

3 3 9 6 
5 10 10 5 

3 7 18 14 1 
5 10 5 5 2 

9 369 405 180 288 27 
4 2744 2744 343 2401 2401 

7 1981 175 4025 8855 8855 607453 
8 82944 512 12288 6912 27648 331776 

1 37 0 250 !25~ 0 0 512 33778 ? 621? 594 1771 

b4 1 0 25 185 20 343 0 0 162 2~7 54 2 -Wi 

TABLE 9. A FSAL CERK(8:5) method with SOV= (5, 1, 3, 3, 4, 4, 4, 5) 

0 

1 1 
3 5 

3 3 9 
10 40 40 

3 3 9 6 
3 T0 10 5 

3 1 0 2 1 
5 10 5 10 

1 101 20 10 55 20 
3 1458 81 729 4374 2187 

6 _ 34 0 208 8 63 2187 
5 25 5 5 10 50 

1 - 0 400 -25 1625 -81 25 72 81 162 1296 16 648 

b4 _17 0 350 25 125 27 0 0 54 27 54 54 2 
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